If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x-108=0
a = 2; b = 10; c = -108;
Δ = b2-4ac
Δ = 102-4·2·(-108)
Δ = 964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{964}=\sqrt{4*241}=\sqrt{4}*\sqrt{241}=2\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{241}}{2*2}=\frac{-10-2\sqrt{241}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{241}}{2*2}=\frac{-10+2\sqrt{241}}{4} $
| x^2+5x=3x+15 | | 21=3(2x+5) | | (5x–13)/(6x–8)=4/5 | | (x+1)2=7x-5 | | 12p^2-11p-12=0 | | 5x2-7=488 | | -y=17-2y | | (x+6)2=24 | | 10x2+2=282 | | 7-x÷3=5 | | 8x2-7=193 | | 9+5y-7y+4y=11 | | 10x-12x=49-9x | | 8z+6=22 | | 13x+2x-6x=45 | | 18x-24x=51-7x | | -8x-9=19x+15 | | (x-5)(x+5)=144 | | m÷2=6-2m÷3 | | 8x+34-7x=43 | | 3x+176=238 | | 0=-5x^2+10x+1.6 | | 12x+30=7x+55 | | 3x+5)=12-2x | | 5z-9=z+11 | | 4x-12-3x+15-3=25 | | X2-56x+784=0 | | 7x+9x-4x=55+5 | | x^2+10x-61=0 | | 8=a/7 | | x=12,2x-8 | | 7=h+3 |